Reflected entropy in holography and beyond

Based on: arXiv: 2107.00009

The Markov gap for geometric reflected entropy H, Parrikar, Sorce

Reflected entropy: Why and what? · Ryu-Takayang: formula Entanglement wedge reconstruction Covariant HRT Formula Quantum extremal Surface Calculation of entropy

of Hawking radiation

· Big payoff to properly understanding quantum Cornelations in holographic theories

- · Which quantities have simple / compelling bulk interpretations?
- · Can they say anything about mult: partite entanglement?

Canonical Purifications

- · Given density operator ge HO R*
- · Treat Holf* as Hilbert Space with

$$\langle\langle g | \epsilon \rangle\rangle = tr(g^{\dagger} \epsilon)$$

. Then | \(\sup_p \rangle \) is a normalized State:

$$\langle\langle \mathcal{I}_{p} | \mathcal{I}_{p} \rangle\rangle = \text{tr}(\mathcal{I}_{p}^{\dagger} \mathcal{I}_{p}) = \text{tr}_{p} = 1$$

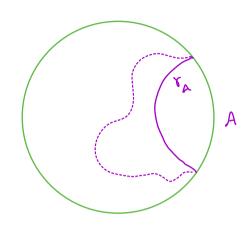
Reflected entropy [Dutta, Faulkner 19] can be

can be -mixed

· Measure of correlation in SAB

Simple examples

· 147 AB is pure

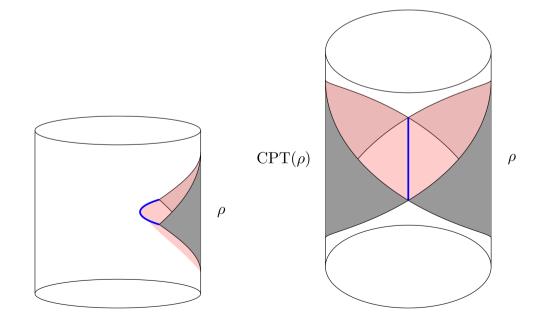

$$S_{R}(A:B) = S(AA^{*})_{V_{P}} = 2S(A)_{\psi}$$

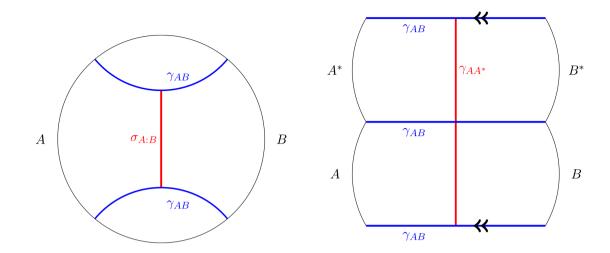
• $S_{AB} = 6_A \otimes T_B$ is product

•
$$S_{p}(A:B) = S(AA^{*})_{V_{p}} = 0$$
 C_{pore} State on AA^{*} !

Holographic interpretation [Dutta, Faulkner'19]

Recall Ryu- Takayanagi:


A roA: r honologo.s to A


ie: YUA = d(Something)

Entanglement wedge:

YAU A = O[W(A)]

· Glue entanglement wedge W(p) to its CPT Conjugate along (quantum) extremal Surface forming the Spatial boundary of W(p).

· Canonical punification of PAB is Contains a Wormhole

$$S(AA^*)_{PS} = \frac{1}{46_{P}} \operatorname{len} \Upsilon_{AA*}$$

$$= \frac{1}{46_{P}} 2 \operatorname{len} \delta_{A:B}$$

$$\Upsilon_{minimal} Cross-section$$
of $W(AB)$

- · Other candidates for Cross-Section
 - · Entanglement of purification [Novemental 18]
 - · Logarithmic negativity [Kudler-Flan, Ryu 197
 - · Balanced partial entanglement [Wen 19]

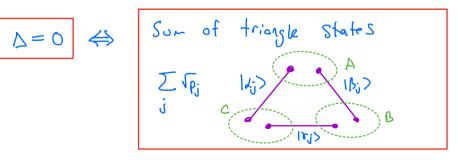
Markov gap à multipartite entanglement

$$= S(AA^*) - [S(A) + S(B) - S(AB)]$$

$$= S(AA^*) - S(A) - S(AA^*B^*) + S(AB)$$

C globally pure on AA* BB*

Conditional mutual information

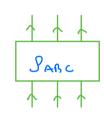

Note [Akers-Rath 19]: A detects multipartite entanglement

For pure 18 ARC,

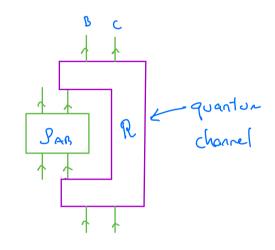
 $\Delta = 0 \Leftarrow only bipartite entanglement$

[Zou et al. 21]

$$\Delta = 0 \Leftrightarrow$$

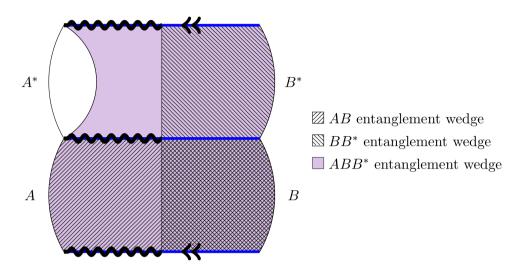


Markou gap in holographic States

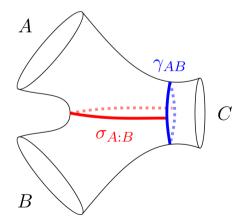

· Intuition from universal recovery maps

[Fawzi, Renner 15]

· Try to make


6-

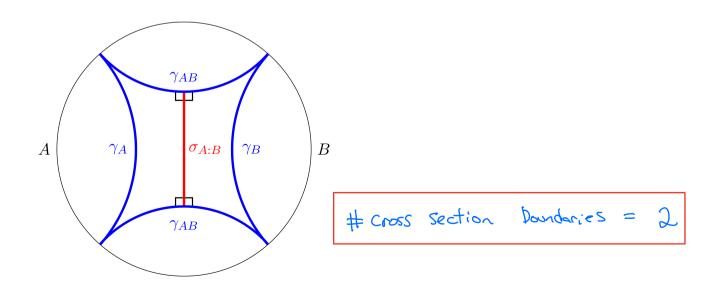
. I (A:C(B) is obstruction to making Base this way

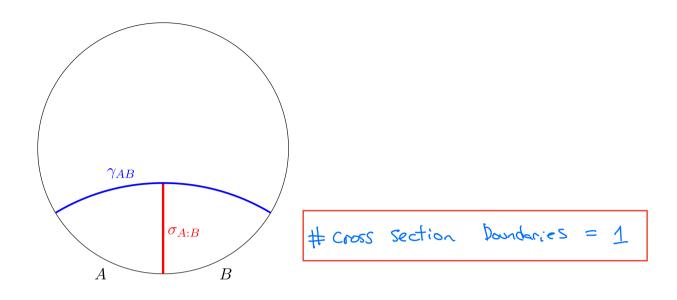

. Recall $\Delta := S_R(A:B) - I(A:B)$ = I(A:B*IB)

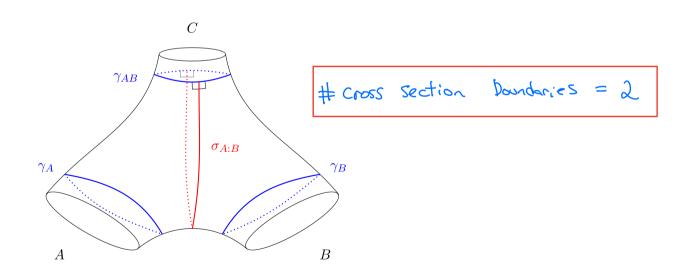
· Consider trying to make JABBR from PAB by acting on B alone

· Cannot expect to properly reproduce bulk correlations across jagged ~~

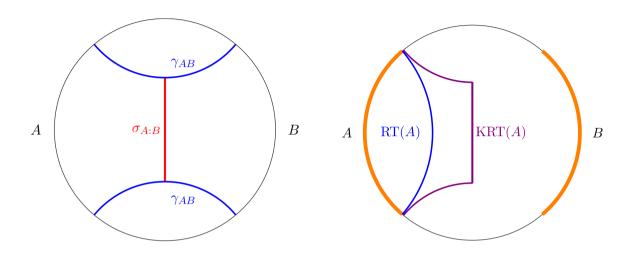
(and probably fail in other ways too!)



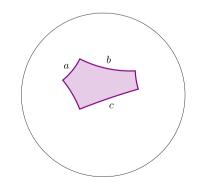



- · In this case, ~ Surface is compact and can be made arbitrarily Small
- · None the less, will find irreducible contribution to Δ from corner where ~ intersects entanglement wedge cross Section δ_{A:B}
- · In pure gravity AdS, / CFT2

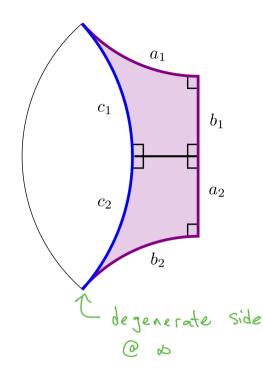
$$\triangle \ge \frac{l_{AdS} \log (2)}{2 G_N} \times (\# \text{ Cross Section boundaries})$$


Examples

Proof idea



D=
$$S_R(A;B) - I(A;B)$$


= $\frac{\text{area}[KRT(A)] - \text{area}[RT(A)]}{4 G_R}$

+ $\frac{\text{area}[KRT(B)] - \text{area}[RT(B)]}{4 G_R}$

Right-angled hyperbolic pentagons

a+b-c > log 2

- · aj + bj cj > log 2
- area [KRT(A)] area [RT(A)]

 4G.

 7 2 log 2

 $\Delta = S_{R} T > \frac{\log 2}{G_{R}}$

General Case:

- · Spatial slice is quotient of hyperbolic plane
- · Work in Covering space
- · Each KRT is honotopic to a Smooth geodesic
 - · Region between them tiled by right-angled hyperbolic pertagons
 - · Length inequality applies
 - · RT area < geodesic area

Take-home message

• Multipartite entanglement, witnessed by $\Delta > 0$, associated to codimension - 3 Structures in space-time

What next?

- · Higher dimensions? Matter?
- . States without t -> -t Symmetry?
- · Is 5p(A:B) a measure of carelation?

$$S_{R}(A:BC) \stackrel{?}{>} S_{R}(A:B)$$

- · Easy to Show holographically
- · Would imply (depending on stass of rigor)

Holographic entanglement of purification conjecture

• Ep (A:B) =
$$\frac{1}{2}$$
 Sp (A:B) for holographic States

Also: formula for distillable entanglement of holographic States